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Abstract—The titanium(IV)-mediated cyclopropanation of ethyl �-chloropropionate by Grignard reagents and in situ tosylation,
followed by base-induced dehydrochlorination provided diastereoselectivity pure (E)-2-alkyl-1-ethenyl-1-(tosyloxy)cyclopropanes,
suitable precursors of 1,1-ethyleneallylmetal species of significant synthetic potential. © 2001 Elsevier Science Ltd. All rights
reserved.

It is notorious and well-documented that functionalized
cyclopropanes provide building blocks of unprece-
dented synthetic potential.1 Particularly, the derivatives
of 1-ethenylcyclopropanols 1a, which can undergo
either selective acid, base or thermally-induced C3�C4–8

ring expansions,2 or fluoride-ion-induced C3�C10,15,20

ring enlargements.3 Moreover, the corresponding sul-
fonic esters 1b,c (mesylates, tosylates) of these allylic
alcohols 1a form significant �- or �-1,1-ethyleneallyl-
metal complexes 2 (M=Pd, Mo, Ni, Zn, …), which
undergo regio- and diastereoselective substitutions
either by soft nucleophiles Nu1

(−), (e.g. enolates) to
provide alkylidenecyclopropanes 3 or by hard nucleo-
philes Nu2

(−) (e.g. organometallic, hydride reagents) to

lead to (1-alkenyl)cyclopropanes 45 (Scheme 1). On the
other hand, substitution by electrophiles E (e.g. alde-
hydes, ketones) provides 3, exclusively; but, this
regioselectivity can be reversed by silyl substituent
effect (R�=SiMe3).5 Various useful synthetic applica-
tions of the amazing organometallic complexes 2 have
been recently reported.6

The 1-(1-alkenyl)cyclopropanols 1a (R=H; R�=H,
aryl, alkyl) were previously available either from the
cyclopropanone hemiacetal,7 or from the 1-hydroxy-
cyclopropanecarboxylic acid;8 while their 2-methyl sub-
stituted chiral derivatives 1a (R=Me) were obtained
diastereo- (de >80–100%) and enantiomerically pure (ee

Scheme 1.

Scheme 2.
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>95–99%) from the suitable asymmetric cyclo-
propanone hemiacetals6c or �-hydroxyacids.9 A new
and attractive method for the ready preparation of
cyclopropanols was based on the titanium(IV)-media-
ted reaction of alkylcarboxylates with Grignard
reagents.10 However, �,�-unsaturated esters 5 provided
the expected 1-vinylcyclopropanols 1a in rather low
yields (�25%)11 because, as recently observed allylic
alcohols such as 1a underwent further reductive elimi-
nation (or alkylation) of the hydroxy group.12 Thus for
instance, upon reaction with the EtMgBr/Ti(Oi-Pr)4

reagent the 1-styrylcyclopropanol 1a (R=H; R�=Ph)
gave the (2-phenylethylidene)cyclopropane 6 in 95%
yield13 (Scheme 2). Nevertheless, this embarrassing
problem was overcome by means of the titanium(IV)-
mediated cyclopropanation of ethyl 3,3-diethoxypro-
pionate 7, followed by a modified Knoevenagel
condensation of malonic acid under microwave irradia-
tion,14 and by the titanium-mediated cyclopropanation
of homoallylic conjugated esters 8,11 which provided
diastereochemically pure 2-substituted (R=Et,
HOCH2-CH2-) (E)- and (Z)-1-(1-alkenyl) cyclo-
propanols, respectively (Scheme 3). Then, the palla-
dium(0)-catalyzed azidation of the corresponding
sulfonated esters 1b,c, which occurred with complete
retention of configuration, allowed for instance, the
diastereoselective synthesis of (E)-14 and (Z)-2,3-
aminocyclopropanecarboxylic acids11 of biological
importance.15 We report herein our attempts to form
1a–c, alternatively from the titanium(IV)-mediated
cyclopropanation of �-haloesters such as 9a,b followed
by base-induced dehydrohalogenation.

While reaction of ethyl 3-bromopropionate 9a (X=Br)
with 2 equiv. of EtMgBr in the presence of 0.5 equiv. of
Ti(Oi-Pr)4 gave the 1-(2-bromoethyl)cyclopropanol 10a
(X=Br; R=H) in 86% yield,16 on the other hand,
reaction of 9a with 2.5 equiv. of n-BuMgBr and 0.2
equiv. of Ti(Oi-Pr)4 in THF at room temperature, led
to the (E)-1-(2-bromoethyl)-2-ethylcyclopropanol 10a�

(X=Br; R=Et) in only 48% yield. However, better
yield was obtained under these conditions from the
�-chloroester 9b (X=Cl), likely due to a reduced steric
hindrance, which provided the (E)-1-(2-chloroethyl)-2-
ethylcyclopropanol 10b (X=Cl; R=Et) in 65% yield
(de: 100%)17 (Scheme 4).

Cyclopropanols were considered as homoenols which
readily underwent electrophilic and anionic ring open-
ing;1a therefore, base-induced dehydrohalogenation of
10a,b, required previous O-protection. Thus, treatment
of 1-(2-haloethyl)cyclopropanols 10a�,b with 2,3-di-
hydropyran (DHP, PPTS, CH2Cl2)18 at room tempera-
ture for 24 h gave the tetrahydropyranyl ethers (E)-
11a�,b in 100 and 70% yield, respectively. Then, upon
treatment with 2 equiv. of potassium t-butoxide in
THF at reflux for 12 h (E)-11a�,b underwent dehydro-
halogenation to produced the expected (E)-1-ethenyl-2-
ethyl-1-tetrahydropyranyloxycyclopropane 12 in 72 and
85% yields, respectively. Otherwise direct, base-induced
dehydrohalogenation of cyclopropanols (E)-10a�,b led
to tarry material. As previously reported,8 (E)-12 can
then undergo deprotection of the THP group by means
of ethanol in the presence of PPTS.18

On the other hand, mesylation of (E)-10b (1.25 equiv.
of MsCl, 3 equiv. of NEt3) in diethyl ether at 0°C
followed by stirring at room temperature for 5 h,
produced the mesylate (E)-13 in 97% yield. However,
base-induced eliminations of hydrogen chloride or of
methanesulfonic acid from (E)-13 (2 equiv. of t-BuOK,
25 equiv. of DMSO in benzene at room temperature for
16 h), which were expected to give as previously
reported,19 the regiomeric allylic mesylate (E)-14 or
chloride (E)-15, potent precursors of the 1,1-ethylene-
allylmetal complexes 2,4 failed; in fact, besides (E)-14
(5%) was obtained as major product the spirocyclo-
propylsulfonate (E)-16 (51%) (Scheme 5), likely arising
from the base-induced deprotonation of the mesyloxy
methyl followed by chloride substitution and
cyclization.20

Scheme 3.

Scheme 4.
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Scheme 5.

Scheme 6.

Otherwise, one-pot titanium(IV)-mediated cyclopropa-
nation of the �-chloroester 9b by 2.5 equiv. of n-
BuMgBr and 0.2 equiv. of Ti(Oi-Pr)4, followed by the
addition in situ of 2.5 equiv. of tosylchloride as work-
up (therefore without any hydrolysis) provided directly
the (E)-1-(2-chloroethyl)-2-ethyl-1-tosyloxycyclopro-
pane 17 in 64% overall yield. Comparatively, tosylation
under classical conditions of isolated (E)-10b (1 equiv.
of DMAP, 1.1 equiv. of NEt3) in dichloro methane at
room temperature for 13 h, gave (E)-17 in only 29%
yield (19% overall yield from 9b).21 Finally, base-
induced dehydrochlorination of (E)-17 by 2 equiv. of
t-BuOK in THF at reflux for 12 h led to the required
(E)-1-ethenyl-2-ethyl-1-(tosyloxy)cyclopropane 18 in
77% yield (Scheme 6), therefore in 50% overall yield
from the cheap commercially available ethyl �-chloro-
propionate 9b. Preliminary studies on the asymmetric
cyclopropanation of 9b (2.5 equiv. of n-BuMgBr, 0.2
equiv. of Ti(Oi-Pr)4), in the presence of 0.4 equiv. of
TADDOL as titanium chiral ligand,22 provided the
cyclopropanol (E)-10b, with 76:24 enantioselectivity.23

In conclusion, complementary to the titanium(IV)-
mediated cyclopropanation of the ethyl 3,3-
diethoxypropionate 7,14 and of the homoallylic ester
8,11 the reaction of the �-chloroester 9b with the n-
BuMgBr/Ti(Oi-Pr)4 reagent, followed by in situ tosyla-
tion and base-induced dehydrochlorination can furnish
readily 2-alkyl-1-ethenylcyclopropanol derivatives such
as (E)-18, efficient precursors of the astonishing useful
1,1-ethyleneallylmetal complexes 2.6 Applications of
this new strategy to asymmetric substrates is under
current investigation.
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